Pointwise estimates for the heat equation. Application to the free boundary of the obstacle problem with Dini coefficients
نویسندگان
چکیده
We study the pointwise regularity of solutions to parabolic equations. As a first result, we prove that if the modulus of mean oscillation of ∆u − ut at the origin is Dini (in Lp average), then the origin is a Lebesgue point of continuity (still in Lp average) for D2u and ∂tu. We extend this pointwise regularity result to the parabolic obstacle problem with Dini right hand side. In particular, we prove that the solution to the obstacle problem has, at regular points of the free boundary, a Taylor expansion up to order two in space and one in time (in the Lp average). Moreover, we get a quantitative estimate of the error in this Taylor expansion. Our method is based on decay estimates obtained by contradiction, using blow-up arguments and Liouville type theorems. As a by-product of our approach, we deduce that the regular points of the free boundary are locally contained in a C1 hypersurface for the parabolic distance √ x2 + |t|. AMS Classification: 35R35.
منابع مشابه
Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle problem with Dini coefficients
In this paper we are interested in pointwise regularity of solutions to elliptic equations. In a first result, we prove that if the modulus of mean oscillation of ∆u at the origin is Dini (in Lp average), then the origin is somehow a Lebesgue point of continuity (still in Lp average) for the second derivatives D2u. We extend this pointwise regularity result to the obtacle problem for the Laplac...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملPointwise regularity of the free boundary for the parabolic obstacle problem
We study the parabolic obstacle problem ∆u− ut = fχ{u>0}, u ≥ 0, f ∈ L with f(0) = 1 and obtain two monotonicity formulae, one that applies for general free boundary points and one for singular free boundary points. These are used to prove a second order Taylor expansion at singular points (under a pointwise Dini condition), with an estimate of the error (under a pointwise double Dini condition...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011